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Abstract 

W e  cons ider  a classical sca lar  field, obey ing  t he  i nhomogeneous  K l e i n - G o r d o n  
equa t i on ,  in  t he  ease of a single po in t  source. W e  propose  a def in i t ion  for t he  
r a d i a t e d  e n e r g y - m o m e n t u m  a n d  give a n  express ion  for i t  in  t e r m s  of t h e  
p re sc r ibed  wor ld  l ine of t he  source where  we assume t h a t  the  acce le ra t ion  
van i shes  outs ide  a f ini te  in te rva l .  W e  f ind t h a t  on ly  t he  p a r t  of t he  wor ld  l ine 
w i th  n o n - v a n i s h i n g  acce le ra t ion  c o n t r i b u t e s  to  t he  rad ia t ion ,  wh ich  t r ave l s  a t  
all speeds  less t h a n  b u t  n o t  equa l  to  t he  speed of l ight .  W e  brief ly  discuss t he  
ease w i t h  more  t h a n  one p o i n t  source.  

1. Introduction 

The classical electromagnetic field, which is normally considered 
to be the high photon density limit of the quantized field (Thirring, 
1958), serves as a useful approximation in a wide variety of physical 
applications. In the same sense, we s tudy the classical scalar field as a 
possible approximation to a meson field (Iwanenko & Sokolow, 1953). 

The field ~ obeys the Klein-Gordon equation 

([~ + m2)~(x) = p(x) (1.1) 

where m is a parameter of dimension L -1, and [] is the d'Alembertian 
operator, 

[] = ~ a~ (1.2) 

The derivative with respect to xg, 

a~ = ~/ax~ (1.3) 

can also be represented by  a subindex t~ following a comma; Greek 
indices range from 0 to 3, Latin indices from 1 to 3. We use the time- 
favoring metric gg~, i.e., 

g00 = - - g l l  = - - g 2 2  = - - g 8 3  = 1 (1 .4)  
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and the modified summation convention for repeated Greek sub- 
indices 

a.b  = at~bt~ = nob o -  a . b  (1.5) 

We restrict our main considerations to the case of a single point 
source with a prescribed world line given by the parametric equations 

~, = ~(~) (1.6) 

In analogy with the electromagnetic current density (Rohrlich, 
1965) 

o9 

= q ( ~ ( x -  ~(~))u,(~)d~ (1.7) jr(  x ) 
- -  o 0  

where q is the charge of the particle, u = d~/d~- and u 2 = 1 (we use the 
proper time to parametrize the world line and set the speed of light 
c = 1), we define the scalar source 

o0 

p(x) = g f ~(x - ~(~))4~ (1.s) 
- - o 0  

where g is the 'scalar charge' of the source. We expect the particle to 
radiate if it is accelerated, and our purpose is to find a way to deter- 
mine the radiation. We study in detail the case in which the accelera- 
tion vanishes outside a finite interval, and we assume tha t  the 
acceleration is sufficiently well-behaved tha t  the various mathe- 
matical operations to be performed be valid. 

Due to the fact that  the field does not propagate with the speed of 
light, it is necessary to give a careful definition of what is meant by 
radiation, which is done in Section 2. In  Section 3 we determine the 
fields at large distances from the source, which we then use in Section 
4 to find an expression for the energy-momentum of the radiation 
field. Section 5 is devoted to a brief discussion of simple generalizations 
of the problem, and we make some concluding remarks in Section 6. 

2. Definition of Radiation 

To find the solution to the Klein-Gordon equation (1.1), we use the 
retarded Green's function (Bogoliubov & Shirkov, 1959; Morse & 
Feshbach, 1953; Iwanenko & Sokolow, 1953) 

- 1  f d~kexp( - i l c . x )  
~ ( x ) -  (2~)~ k ~ T i ~ o i ~ 0 1  (2.1) 

0(t){8(~) - m O(a)jl(mal/2)} (2.2) 
=2~ 
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where O(t) is the step function, and ;~ = x 2. The general solution of 
equat ion (1. l) then  is 

~(x) = ~ ' (x )  + f p(x') AR(x - x ' )d4x  ' (2.a) 

where cpi'(x) is the solution of the homogeneous Klein-Gordon equat ion 
tha t  satisfies the appropriate initial conditions given for ~o(x) in the 
remote past.  

A simple example, t ha t  also serves as a check on the source (1.8), is 
the determinat ion of the field of a particle in uniform motion. We 
have ~in = 0, and 

~:~(T) = 8.0 r (2.4) 

in the rest frame of the particle. We use A n given by  equat ion (2.1) to 
obtain the Yukawa field 

~(x) - g exp I-mr(x)] (2.5) 
4~rr(x) 

where r(x) = lxl. In  an arb i t ra ry  Lorentz frame, r(x) is the distance 
from the field point x to the world line of the particle. 

To find the field of a particle with arb i t ra ry  prescribed world line 
and no incoming field, we subst i tute the source (1.8) and the Green's 
funct ion (2.2) into equat ion (2.3) to obtain 

co 

q)(x) = g ~ drAR(x - ~(r)) (2.6) 
- - o o  

f Jl(mA~/2) car g ~g (2.7) 

--oo 

where A~ = (x - f(r)) ~, ~R = ~(rR), u~ = u(r~), and r~(x) is the proper 
t ime of the intersection of the backward light cone from x and the 
world line of the particle, i.e., the solution of ( x -  ~(%))2 = 0 with 
~o(rR) < t. We change the integrat ion variable to 

= m ~ i 2  (2 . s )  

and the expression of the field becomes 
co 

g g j d~ J ' ( [ )  (2.9) 
~ ( x )  = 4 ~ ( x  - ~ n ) .  % 4 ~  (z  - ~(~)). ~(~) 

0 

where now r = r(x, ~), and 

Or(x, ~)/a~ = -~[m~(x - ~). ,~]-~ (2.10) 
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In tegra t ion  by  par ts  gives 

~(x) = -g(4~rm2) -1 ; d~J0 (~ ) [ -1  + (x - ~). w][(x - ~). u] -~ 
0 

== --(g/47r) f drJo(mA~/~)[ - 1 + (x - ~).  w][(x - ~). u] -2 
- - G O  

(2.11) 

(2.12) 

t t I 

. R 

F i g u r e  1 . - - W o r l d  l ine of a par t ic le  acce le ra ted  over  a f inite i n t e rva l  PIP2. The  
r a d i a t i o n  field is rece ived  over  t he  ' cy l indr ica l '  surface  Z1, wh ich  is s e p a r a t e d  
in to  a ' su r f '  r eg ion  82: b o u n d e d  b y  t he  curves  C1 a n d  C2 d e t e r m i n e d  b y  t h e  

l igh t  cones f rom P1 a n d  P2 a n d  t he  'wake '  region •2 a b o v e  C2. 

where w = d u / d r  is the  four-accelerat ion of the particle.  We see, f rom 
the  above expressions for ~(x), t ha t  the field at  a certain point  x is 
not  just  de te rmined  by  the characterist ics of the world line at  the  
r e t a rded  event  ~R(X), bu t  r a the r  depends on the  entire world line 
pr ior  to ~ .  Consequently,  there  is no direct  correspondence between 
a radia t ion  field a t  an observat ion  point  x and a single even t  on the  
world line at  which it  can be said tha t  the radia t ion was emit ted.  
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Conversely, a given event on the world line contributes to the field 
at all future observation points. The cancellation of the term coming 
from the ~(A) in the Green's function as a result of the integration 
by parts suggests that  the radiation does not travel with the speed 
of light. 

We now assume that  the acceleration vanishes except for a finite 
interval 71 < 7 < 72. We choose a reference frame with origin at ~(T2) 
and time axis along the outgoing world line, as shown in Fig. 1. In 
three-dimensional language, the particle comes in with constant 

17 

-----m- y 

• 

Figure 2.--Three-space trajectory of the particle. It is accelerated between PI 
and P2, and it finally comes to rest in this particular Lorentz frame. 

velocity, is accelerated over a finite time interval and comes to rest 
at a time we call t = 0 and at a point we choose as origin of our co- 
ordinate system, as shown in Fig. 2. We construct a fixed three-dimen- 
sional sphere of large radius R centered about the origin and enclosing 
the region where the accelerated motion of the particle takes place ; 
this sphere is represented by the 'cylinder' in Fig. 1 in Minkowski 
space. The intersection of this cylinder and the forward light cone 
from the event ~(T1) is represented by the curve C1. We note that  the 
field falls off exponentially away from the incoming world line and is 
completely negligible on the cylinder below C1, except for a local 
disturbance in the neighbourhood of the event ~(70), when the particle 
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enters the  sphere. We define the energy and m o m e n t u m  of the 
radiat ion 

p r o d _  lira f (2.13) T~(x) d% v --R-->zoZ~ 

where 2:1 is the surface of  the cylinder above C1. We have intent ional ly 
excluded any  contr ibut ion from the particle crossing the surface of the  
sphere. The stress-energy tensor T~, is given b y  

T~, = ~,~ ~,, - ~q~g,, (2.14) 

where the  Lagrangian densi ty  the is 

= - 

3. Faraway Fields 

In  order to compute  prad --.  , we have to determine the behavior  of  
~(x) and ~,~(x) on 2:1 for large values of  R. I t  is convenient  to break  
up Z1 into two parts,  3Z  and Z2, separa ted  b y  the intersection Cs of  
the  forward light cone from ~(~2) and the cylinder, as shown in Fig. 1. 

We first s tudy  ~(x) for a point  x on 3Z. The integral in Eq. (2.11) can 
be broken up into two pieces, one from 0 to ~l(x), in which w ~ 0, and 
the other  from ~1 to o0, in which w = 0; the value ~1 is 

; l ( x )  = n [ ( x  - 

Because t on ~Z is bounded  b y  

where 

we have 

R>~t>~R-  [1~o(~'1)l § [~(~'1)[] 

(3.1) 

(3.2) 

(3.3) 

~l(x) = O(R 1/~) (3.4) 

when x is a finite distance away  from C1. In  this case, we break up 
the integral from 0 to ~ fur ther  into a par t  from 0 to ~' -- 0(R(1/2)-~), 
where ~ is an a rb i t ra ry  posit ive number  less than  �89 and one from ~' 
to ~1. Equa t ion  (2.10) shows tha t  

r(~') - Tn = O(R -2~) (3.5) 

since 
( x -  ~).u ~ O(R) (3.6) 
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so t h a t  

/ d ~ J 0 ( 0 [ - 1  + (x - ~). w][(x - ~). u] -a 
0 

[--1 + (x -- ~R). wnJ[(x -- ~ ) .  u~] -~ f d~.~Jo(~) 
o 

(3.7) 

since the quanti t ies in brackets are essentially cons tant :over  this 
range of integration.  We evaluate 

whence 

~ r 

f d ~ J o ( ~ )  = ~ ' J l ( ~ ' )  = O(R(1/4)-(we)) 
o 

(3.8) 

/ d ~ J 0 ( 0 [ - 1  + (x - ~). w][(x - ~). u] -~ = O ( R  (-7/4)-(~''2)) 
0 

(3.9) 

In  the range ~' ~< ~ ~< ~ ,  we can use the asymptot ic  form of the Bessel 
function. ~Te have, using equat ion (2.12), 

T" 

f d,Jo(ma~/'~)[-1 + (x - ~). ~v][(x - ~).  u~ -2 = O(R -~/4) (3.10) 

since the range of integrat ion is finite. We have disregarded the fact 
t ha t  the Bessel function behaves like R (-1/4)+(~/2), instead of R -~/4, at  
the lower limit and  its immediate  vicinity, which has no influence on 
the overall behavior of the integral, as can also be seen when ~ is used 
as the variable of integration.  Note t ha t  this is an est imate for the 
highest order in R it can have, and tha t  the field can be strongly 
decreased due to destructive interference from the oscillating behavior 
of the Bessel func t ion . t  For  the piece where w = 0, we note t ha t  

x - -  ~ = (x - ~) . u u  -- rn  (3.11) 

where n is the uni t  normal  from the point x to the incoming world line, 
and r = O ( R )  is the corresponding distance. Squaring equation(3.11), 
we obtain 

(x - ~) .  u = ( ~ t m  ~ + r2) ~I~ ( 3 . I 2 )  

See t h e  d i s c u s s i o n  a f t e r  e q u a t i o n  4.7 be low.  
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whence, using the asymptotic form ofJ 0 and integrating by parts, we 
have 

; d~Jo(~)[(x - ~). u] -~ 

(2Ir 1/2 ; d ~  li2 cos (~ -- l~)(~_21m2 -i- r2) -8/u 

= --(2/7r)'/~ ~/'2 sin (~l -- I~)(~121m 2 + r2) -~12 

- (21 ) 1 

(3.13) 

~ d ~  sin (~ - ~ )  1~-1/2(~2/~%2 _~_ r2)-512(_5~2/m2 -t- r 2) 

= O(R-512) 

since t he  i n t e g r a t e d  t e r m  is of  o rde r  R -11/4 and  for  the  in tegra l  we 
h a v e  

~ d~ sin (~ - ~-~r) ~-112(~21m2 -7- r2)-~iz(-5~21m2 + r2)i 

<~ ; d~-112(~2/m2 + r~)-a12[(5~21m2 + r2)l(~2/m2 + r2)] 

5 
oo 

<<. 5mll~r-512 f dzz-ll2( z'~ + 1) -~/2 = O(R-m 2) 
t) 

(3.14) 

where  z = ~/(mr). 
I f  t he  po in t  x is so close to  t he  curve  C 1 t h a t  ~l(x) = o(Rll2), we can 

set ~' = ~i and the integral in equation (3.10) does not appear, and 
9(x) goes to zero more rapidly as R --> ~. 

Now we turn to the behavior of ~(x) for x on 272. The integral in 
equation (2.11) can be broken up into three pieces, indicated sym- 
bolically b y  

f § i~§ ; (3.15) 
o o ~ ~ 

To  e s t ima t e  the  first  in tegra l ,  we no t e  t h a t  (Erddlyi ,  1953) 

; d~Jo(~)(~2/m ~ + R2) -8/2 = m 2 e x p  ( -mR) /R  
0 

(3.16) 
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f rom which we have to sub t rac t  the integral  f rom ~e to ~,  which has 
the  form of  the one in equa t ion  (3.13). We note  t h a t  ~2 (and ~1) can 
now be of order  R ~, where ~ > �89 bu t  this poses no difficulties. Hence 

~2 

f d~Jo(~)(~2/me + Re) -~/e = O(R-5/2) 
o 

(3.17) 

The th i rd  integral  in equa t ion  (3.15) is again the integral  in (3.13), 
except  t ha t  now r is zero at  the field point  where the extension of 
the incoming world line intersects the cylinder. The region about  this 
point  can be seen to in t roduce no changes, since for r = 0 we have 
~1 ~ R / l u ( r l ) l  = O(R), and the integral  in equa t ion  (3.1r is now 
bounded  by  

5m '~ f d[.~ -7/'z = O(R ~5/2) (3.18) 

For  the second integral,  ~ is finite and can be neglected in terms 
such as (x - ~) .u  and (x - ~).w, bu t  not  in (x - ~)ei I f  t = R + O(R ~) 
with 0 ~< a < 1, we have ~l,e = 0(R(1/'~)+(~/2)), and we use the asymp- 
tot ic  form of J0 to  find tha t  

5 . f~ 
f d~Jo(~) x .  w(x u) -3 = m s drJo(m21/2) x .  w(x.  u) -2 
~2 7"1 

= 0 ( R ( - 5 / 4 ) - ( ~ 1 4 ) )  

(3.19) 

I f t  = R + O(R ~) with ~ ~> 1, we have ~1,~ = O(R~) and 

5 
f d~Jo(~) x .  w(x.  u) -~ = O(R -(~/2)~) (3.20) 

In  the  small region immedia te ly  above C2 (~ < 0), the integral  can be 
seen to be at  most  of order  R -5/2 by  equat ion (3.10). 

Summarizing,  we have shown tha t  the leading contr ibut ions to the  
field come from the region of the world line where w ~ 0, and tha t  

~ ( x )  = O ( R - ~ / 4 ) ,  x o n  ~ Z  

t0 (R(-5 /4) - (~/4) ) ,  0 <~ ~ <~ 11 
~ ( x )  = (0(R_(3/2)~) ,  ~ >~ 1 J ' 

x on Z~ 

(3.21) 

(3.22) 

where the pa rame te r  ~ comes from the condit ion t = R + O(R ~) for 
the  field point .  
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An observer on the sphere in Fig. 2 would notice that,  at a time 
given by a point on C1 (in Fig. 1), a field of order at most R -5/4, but 
possibly smaller due to destructive interference, is quickly built up 
and persists for times corresponding to 32:. This 'surf' is then followed 
by a long 'wake', at later times corresponding to X2, with a field of 
decreasing intensity. 

We now use equation (2.11) and 

3, ' r (x ,  ~) = ( x ,  -- ~t~)/(x -- ~) . u (3.23) 

to find 

%,(x) = --g(4~rmS) -1 ; dr  - ~) .  u) 2] w, 
0 

- [ 3 ( - 1  + (x - ~ ) .  ~ ) ( x  - ~ ) .  u]  u ,  + [(x - ~). ~(~ - ~ ) .  u 

- 3 ( - 1  + (x - ~). wV](x,  - ~,)}[(x - ~). u] -~ 
(3.24) 

where ~b = dw/d-r. 
The behavior of%~(x) is the same as that  of ~(x) for large values erR. 
We are now prepared to s tudy the behavior of the energy and 

momentum of the field at large distances from the source. 

4. R a d i a t e d  E n e r g y - M o m e n t u m  

We break up the integral in equation (2.13) into two parts, one 
over the surf region 3Z and the other over the wake region Ze. Equa- 
tion (3.21) shows tha t  there is no contribution from the surf region 
when R -+ ~, since the range of the integration over t remains finite. 

A point x~ = (t, x) on the wake region is defined by 

t = R + O ( R  ~) (4.1) 

x = R/~(~) (4.2) 

where/~(f2) is the outward unit normal on the sphere in the direction 
given by the angles 0 and ~. The surface element on the cylinder has 
to be taken pointing towards the time axis, since the cylinder is a 
timelike surface. We thus set d% = nt,&r,  where 

nt~ = (0,-/~) (4.3) 
Then the energy is 

(4.4) 
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The R -a/2 behavior of t~ and  ~,~ when = = 1 in equat ion (3.22) 
indicates t h a t  the limit in equat ion (4.4) is finite and nonzero, since 
the range of integrat ion over t provides an addit ional  power of R. 
We can also see from equat ion (3.22) t h a t  regions where = # 1 do not  
contribute to the radia ted energy. Since the speed of propagat ion of 
the  field is of the order of R/ t  = 1/[1 + O(R=-I)], the physical sig- 
nificance of the preceding remark is t h a t  the radiat ion travels with 
speeds less t han  the speed of light. 

We use the large R limit of ~o~ in equat ion (3.24), 

T2 

-(g/4=) x ,  f drJo(mA~/2)[x. ~bx. u - 3(x. w)2](x, u) -~ (4.5) ~,~ 
TI 

gin2[ x, Jl(mA~/2)]~: +gm 4 ~~ _, gdm%$/e) 
- j ~ : - ~ 2  " ( 4 . 6 )  

T1 

where we have integrated by  parts  twice, and we have set 
w(rl) = w(r2) = 0. Since the region where we are at  a finite distance, 
t ha t  is, of order R ~ away from C~ does not  contribute to the radiation,  
we can s tar t  our integrals at  t = R § a instead of t = R to be able to 
use the asymptot ic  form of the Bessel functions. Fur thermore ,  we 
can neglect ~ in ;~ = ( x -  ~)~ when it is not  in the a rgument  of an 
oscillating function, in which case we set 

~tl/2 ~_~ ~ 1 1 2  ~--1/2X. ~-. 8(X, T) ( 4 . 7 )  

In  the region of interest,  where t = R § O(R), we have ;~ = O(R 2) and 
x .  ~ = O(R), so tha t ,  for a given x, s is equal to a (large) constant  plus 
a slowly varying funct ion ofT. On the other hand,  when t = R § 0(~~ 
;~ = O(R) only and  the expansion in equat ion (4.7), as well as the neglect 
of the second te rm of the expansion for nonoscillating functions, are 
not  justified, bu t  we do not  worry, since this region does not  contri- 
bute  to the radiat ion anyway.  This is also a region where we get 
destructive interference from oscillating functions with arguments  of 
the form Rl l2 f ( r ) .  We thus  obtain from equat ion (4.6), 

( 4 . 8 )  

~1/2 drcos (ms - -  ~ 

l l  
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We subst i tute  the expression (4.8) into (4.4), and we use (4.3) to find 

P0 = lira R2 f dr-2 { dt Rt rage l[ c~ (ms -  ~,)],2 
R § a .J'r l 

(4.9) T~ 

~ f tl/2 drcos  (ms - �88 
T I  

where a is an arbi t rary  constant  independent  of R. 
In  order to compute the momen tum P, it  is also necessary to have 

the asymptot ic  form of the field ~o in equat ion (2.12) 

~o ~ -(g/lTr) drJo(m~/2) x. w(x. u) -2 (4.10) 

_ g [J0(mt1/2)] TM gm 2 f2d.cJl(mA:/2 ) 

�9 1 ( 4 . 1 1 )  

g 2 ~(_7r~)1/2 1 {[c~ l~r)] ~ 
X .  ~ - j  ~.~ 

z~l/2 dr cos (ms - ~,) (4.12) 

T1 

which is then  subst i tu ted into 
O9 

P j =  lim f d t f R 2 d ~ [ - % j % i - ~  ij(%~%~- V2)]ni (4.13) 

The angular  distr ibution of the emi t ted  radiat ion can be obtained 
from equations (4.4) and (4.13) by omit t ing the integrations over 
angles. I t  can be seen tha t  dP/d~2 is parallel to _~. 

5. Generalizations 

In  Section 3 we showed tha t  the leading contributions to ~ and ~o,~ 
come from the par t  o f the  world line where w r 0 only. From equations 
(4.5) and (4.10) we see t ha t  the actual  source of the radiat ion field is 
restricted to 7"1 < r < r 2. I t  should then  be possible to deform the 
surface of the cylinder to any  shape as long as it encloses this segment 
of the world line and. its spatial dimensions tend  to infinity, in par- 
ticular,  to another  cylinder whose axis is at  an angle with the world 
line of the outgoing particle. The lat ter  represents a three-dimensional  
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spherical surface, with respect to which the particle is not finally at 
rest, but  moves with constant velocity, and we have eliminated any 
contribution from the Yukawa field when the particle eventually 
passes out of the sphere. 

The above considerations indicate how to calculate the radiation 
from a system of several particles that  undergo accelerations in the 
same finite region of spacetime. One has merely to enclose this region 

'7 \ \  \ 

\ \ 

\ \\ / 

\\\\ \\. / 
i i 

i t "r~ I III / 
T2 I T ,  ' ! 

2 

T I 

f / 

// 

I 

Figure 3 . - -Wor ld  lines of several particles accelerated wi th in  a finite region of 
spaeetime, included wi th in  the cylinder.  

with a large cylinder and obtain the total field by superposition of the 
fields obtained from the segments. The axis of the cylinder can be any 
timelike direction, as shown in Fig. 3. 

What we have discussed is an approximation to the ease where the 
accelerations tend asymptotically to zero. I t  should be possible to 
extend the integrations in equations (4.5) and (4,.10)over the whole 
world line if the accelerations go to zero sufficiently rapidly. 

Since we have expressions for the radiation field and its derivatives, 
it is straightforward to compute other physical quantities, such as the 
radiated angular momentum. 
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6. Concluding Remarks 

We have analyzed the problem of scalar radiation from a point 
source. 

We have found that  there is no contribution to the radiation field 
from those parts of the world line where the acceleration vanishes. 
The field at a large distance R from the acceleration region behaves 
initially (for times t ~ R) at most like R -5/4. For much later times 
[t = R + 0(R)] we find a R -3/2 behavior of the field, and this is the 
only region that  contributes to the radiated energy momentum; the 
area of the large sphere provides a factor R 2 and the time integration, 
an additional power of R. We thus find radiation that  travels at speeds 
0 < v < l .  

Although we have treated explicitly only the case of a single 
particle accelerated over a finite interval, generalizations to include 
more than one particle or particles with asymptotically vanishing 
accelerations appear straightforward. 
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